

Blood Brain Barrier and BDNF Delivered To the Brain Using PLGA Nanoparticles

Renad Alyautdin¹, Igor Khalin², Tin Wui Wong³

1Scientific Centre for Expert Evaluation of Medicinal Products, Moscow, Russia 2National Defense University of Malaysia,

3 University of Technology MARA, KL, Malaysia

Concept of the blood-brain barrier

Paul Ehrlich

Edwin Goldman

Concept of the blood-brain barrier

Concept of the blood-brain barrier

Lina Solomonovna Stern

How to overcome the blood brain barrier?

Distribution of nanoparticles depending on the modification of their surface

Comparison of pharmacokinetic parameters of TNF and nanoTNF

	С тах мкг/мл	Vd мл	AUС мг/мл/мин	СІ мл/мин	t 1/2
TNF	0,32	163	20,6	2,6	26
Au-TNF	3,0	18	248	0,21	182

Alyautdin R. N., Reichel A., Lobenberg R., et al. Interaction of poly(butyl)cyanoacrilate nanoparticles with blood-brain barrier in vivo and in vitro // J. Drug Target. - 2001. – Vol. 9. - P. 209-221

Transport of drugs through blood brain barrier

Traumatic Brain Injury

The TBI incidence is predicted to surpass many diseases as the main cause of death and disability by the year 2030

Traumatic Brain Injury

Brain-derived neurotrophic factor

BDNF vs TBI

Anti-apoptosis

Apoptosis

Anti-inflammation

Neuro-inflammation

Anti-neurotoxicity

Neurotoxicity

Neural regeneration

Neural degeneration

Neuroplasticity

Neuronal impairment

Cognitive improvement

Cognitive disturbances

BDNF is an excellent candidate for developing new therapies for treatment of TBI?

Delivery to the brain

Poloxamer 188

Objectives

- ✓ To design NPs, capable to transport BDNF through BBB.
- ✓ To evaluate efficacy of BDNF brain targeting.
- ✓ To evaluate efficacy of the neuroprotective action of the compound using the model of TBI.

Experiment design

- 1. BDNF adsorption
- 2. BDNF delivery
- 3. BDNF effect

Experimental TBI

Mouse closed head injury model induced by a weight-drop device

Michael A Flierl¹, Philip F Stahel^{1,2}, Kathryn M Beauchamp², Steven J Morgan¹, Wade R Smith¹ & Esther Shohami³

¹Department of Orthopaedic Surgery, Demver Health Medical Center, University of Colorado School of Medicine, Denver, Colorado, USA. ²Department of Neurosurgery, Denver Health Medical Center, University of Colorado School of Medicine, Denver, Colorado, USA. ³Department of Pharmacology, School of Pharmacy, The Hebrew University of Jerusalem, Jeru

Published online 27 August 2009; doi:10.1038/nprot.2009.148

Flierl, et al. Nature protocols 4.9 (2009): 1328-1337 weight height

Target area

TBI evaluation

Neurological severity score (NSS)

No	Task	Score
1	Exit circle within 3 min	1
2	Seeking behavior	1
3	Startle reflex	1
4	Straight walk	1
5	Mono- or hemiparesis	1
6	Balance on 0.7-cm-wide beam during 10	1
	seconds	
7	3-cm-wide beam walk within 3 min	1
8	2-cm-wide beam walk within 3 min	1
9	1-cm-wide beam walk within 3 min	1
10	Balance on 0.5-cm-diameter round stick	1
	during 10 seconds	

TBI evaluation

0.3 mA, 2 s, cut-off: 180 s

- Quick procedure for studying short- and long-term memory
- Ideal test for first screening
- Sensitive for both rats and mice

Experiment design

- 1st group PBS
- 2nd group PBS + BDNF 5µg
- 3rd group*- PBS + PLGA
- 4th group PBS + BDNF 5µg + Pol 188
- 5th group PBS + PLGA + BDNF 5µg
- 6th group PBS + PLGA + BDNF 5µg + Pol 188

controls

Experiment design

* vs PBS group # vs PBS+NP+BDNF+PX group

NSS 7 days after TBI

*vs PBS+NP+BDNF+PX group

Passive Avoidance

* vs PBS # vs PBS+NP+BDNF+PX group

Conclusions:

- ✓ We have designed PLGA NPs coated by Poloxamer 188, capable of transporting BDNF through the BBB and providing neuroprotective effect in mice with TBI.
- ✓ Our study demonstrates the **potential** of using nanoparticulate delivery of BDNF into CNS in the treatment of TBI.
- ✓ We employed clinically relevant modeling of TBI, optimal time point and clinically feasible method of drug administration

Благодарно за внимание